

 Module 1: Introduction to C

• History and features of C language

• Structure of a C program

• Compilers and IDEs (Turbo C, GCC, Code::Blocks)

• Input/output functions (printf, scanf)

• Understanding header files and libraries

 Module 2: Basics of C Programming

• Data types, variables, constants

• Operators (arithmetic, relational, logical, bitwise)

• Control structures (if, if-else, switch)

• Loops (for, while, do-while)

• Break and continue statements

 Module 3: Functions & Modular Programming

• Defining and calling functions

• Function arguments (call by value, call by reference)

• Recursion basics

• Scope of variables (local, global, static)

 Module 4: Arrays & Strings

• One-dimensional arrays

• Multi-dimensional arrays (matrices)

• String handling functions (strlen, strcpy, strcmp, etc.)

• Practical applications (sorting, searching)

 Module 5: Pointers

• Introduction to pointers

• Pointer arithmetic

• Pointers and arrays

• Pointers and functions

• Dynamic memory allocation (malloc, calloc, free)

 Module 6: Structures & Unions

• Defining and using structures

• Nested structures

• Arrays of structures

• Unions and differences from structures

• Practical applications (student records, employee database)

 Module 7: File Handling

• Opening and closing files

• Reading and writing text files

• Binary file operations

• File pointers and error handling

• Practical applications (report generation, data storage)

 Module 8: Advanced Topics & Projects

• Command-line arguments

• Preprocessor directives (#define, #include, macros)

• Bitwise operations and applications

• Building small projects (calculator, library management, student database)

• Final project: Complete application using C concepts

 Learning Outcomes

By the end of this course, students will:

• Understand C syntax and program structure

• Apply control structures, functions, arrays, and pointers effectively

• Manage data using structures, unions, and files

• Build small to medium-sized applications in C

• Gain confidence for advanced programming (C++, Java, Python)

